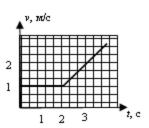


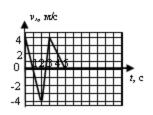
МЕХАНИКА

Кириллов А.М., учитель гимназии № 44 г. Сочи (http://kirillandrey72.narod.ru/) Данная подборка тестов сделана на основе учебного пособия «Веретельник В.И., Сивов Ю.А., Толмачева Н.Д., Хоружий В.Д. Физика. Методы решения тестовых заданий. Томск: Изд. ТПУ, 2004 г.»


Часть А

- 1. К.Э. Циолковский в книге «Вне Земли», описывая полет ракеты, отмечал, что через 10 с после старта ракета находилась на расстоянии 5 км от поверхности Земли. С каким ускорением двигалась ракета?
- 1) 1000 m/c^2
- 2) 500 m/c^2 3) 100 m/c^2 4) 50 m/c^2
- 2. Скорость пули при вылете из ствола пистолета равна 250 м/с. Длина ствола 0,1 м. Каково ускорение пули в стволе, если считать ее движение равноускоренным?
- 1) 312 m/c^2
- 2) 114 m/c^2 3) 1248 m/c^2 4) 100 m/c^2
- **3.** Одной из характеристик автомобиля является время t его разгона с места до скорости 100 км/ч. Сколько времени потребуется автомобилю, имеющему время разгона t=3 с. для разгона до скорости 50 км/ч при равноускоренном движении?

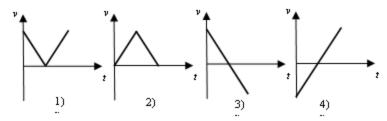
- 1) $\frac{3}{2}$ c 2) $\frac{3}{4}$ c 3) $\frac{3}{50}$ c 4) $\frac{3}{\sqrt{2}}$ c
- **4.** Одной из характеристик автомобиля является время t его разгона с места до скорости 100 км/ч. Два автомобиля имеют такие времена разгона, что t_1 =2 t_2 . Ускорение первого автомобиля по отношению к ускорению второго автомобиля
- 1) меньше в 2 раза
- 2) больше в $\sqrt{2}$ раз 4) больше в 4 раза
- 3) больше в 2 раза
- 5. Мотоциклист и велосипедист одновременно начинают равноускоренное движение. Ускорение мотоциклиста в 3 раза больше, чем у велосипедиста. Скорость мотоциклиста больше скорости велосипедиста в один и тот же момент времени
- 1) в 1,5 раза
- 2) больше в $\sqrt{3}$ раз 3) в 3 раза
- 4) в 9 раз


6.

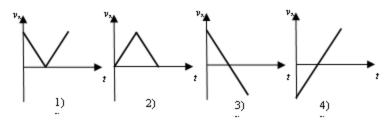
Тело движется прямолинейно в одном направлении. График зависимости модуля скорости тела от времени приведен на рисунке. Ускорение тела в интервале времени 2-3 с равно

- 1) $1/3 \text{ m/c}^2$ 2) $2/3 \text{ m/c}^2$ 3) 1 m/c^2
- 4) 2 m/c^2

Тело движется вдоль оси 0х. На рисунке изображен график зависимости проекции скорости тела v_x от времени t. В течение какого промежутка времени модуль ускорения тела был наименьшим?

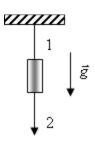

1)0-1 c

2)1-2c


3)2-3 c

4) 3-5 c

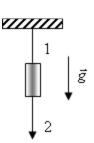
8. Тело, брошенное вертикально вверх со скоростью \vec{v} , через некоторое время упало на Землю. Какой график (1, 2, 3 или 4) соответствует зависимости модуля скорости от времени движения?



9. Тело, брошенное вертикально вверх со скоростью \vec{v} , через некоторое время упало на Землю. Какой график (1, 2, 3 или 4) соответствует зависимости проекции скорости на ось ОХ от времени движения? Ось ОХ направлена вертикально вниз.

10.

Массивный груз подвешен на тонкой нити 1 (см. рисунок). Снизу к грузу прикреплена такая же нить 2. Какая нить оборвется первой, если резко дернуть нить 2?

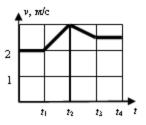


1) 1 2) 1 и 2 одновременно

3) 2 4) 1и 2 – в зависимости от массы груза

10-2.

Массивный груз подвешен на тонкой нити 1 (см. рисунок). Снизу к грузу прикреплена такая же нить 2. Какая нить оборвется первой, если медленно тянуть нить 2?



1) 1 2) 1 и 2 одновременно

3) 2 4) 1и 2 – в зависимости от массы груза

- 11. Можно ли считать инерциальной системой отсчета движущийся поезд?
 - 1) нельзя
 - 2) можно всегда
 - 3) можно, если он движется прямолинейно и равномерно
 - 4) можно во время разгона и торможения

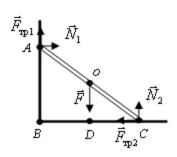
На рисунке изображен график зависимости модуля скорости вагона от времени в инерциальной системе отсчета. В течение каких промежутков времени суммарная сила, действующая на со стороны других тел, равнялась прямолинейном участке пути?

- 1) 0 t_1 , $t_3 t_4$
- 2) $0-t_4$ 3) t_1-t_2 , t_2-t_3
- 4) таких промежутков нет
- **13.** Тело движется прямолинейно так, что его координата изменяется со временем t в соответствии с уравнением $x = 5t^2$. Сила, действующая на тело,
- 1) постоянна, не равна нулю
- 2) равна нулю

3) возрастает

4) убывает

14.

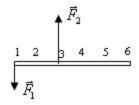

Тело массой 2 кг движется вертикально вверх с ускорением, модуль которого равен 3 м/с² (см. рисунок). Каковы величина и направление равнодействующей силы F, действующей на тело?

- 1) 6 Н; вертикально вниз
- 2) 2/3 Н; вертикально вверх
- 3) 3/2 Н; вертикально вверх
- 4) 6 H;
- 15. Мяч неподвижно лежит на полу вагона поезда, движущегося относительно Земли. Что можно сказать о скорости поезда?
- 1) скорость увеличивается 2) скорость уменьшается
- 3) скорость постоянна
- 4) скорость может, как уменьшаться, так и увеличиваться
- 16. Подъемный кран поднимает груз с некоторым ускорением. На груз со стороны каната действует сила 8 кН. На канат со стороны груза действует сила
- 1) 8 kH
- 2) меньше 8 кН
- 3) больше 8 кН
- 4) равна силе тяжести, действующей на груз
- 16-2. Подъемный кран поднимает груз с некоторым ускорением. На груз со стороны каната действует сила 8 кН. Сила тяжести, действующая на груз
- 1) 8 kH
- 2) меньше 8 кН
- 3) больше 8 кН
- 4) равна произведению ускорения на массу тела

17. Автомобиль мас мосту. Автомобиль мост действует на а	действует на м	мост в верхн				
1) 9000 Н и направл 2) 9000 Н и направл 3) 19000 Н и направ 4) 1000 Н и направл	ена вертикаль лена вертикал	но вверх ьно вниз				
18. В состоянии нев	есомости					
1) масса тела равна в 3) на тело не действ	-	2) во илы 4) сі	ес тела равен ила тяжести р	-		
19. Чтобы в само двигаться	лете летчик	испытывал	состояние	невесомос	ти, самолет	должен
1) с ускорением \vec{g} 3) равномерно и пря	имолинейно	*		ол йоннко	модулю скоро	стью
20. Сила гравитац расстоянии 2 м дру шари ками, если расс	г от друга, ра	вна 9 мкН.	Какой будет	сила прит		
1) 3 мкН 2) 6 мг	кН 3) 2 мн	κН	4) 1 мкН			
21. На полу лифта, дверх, лежит груз ма				ем <i>a</i> , напраг	вленным верт	икально
1) $m(g-a)$	2) mg	3) 0	4) $m(g+a)$)		
22. Сила притяжени Солнцу. Во сколько и Солнцем в 1,5 раза	раз масса Зем	ли больше і	иассы Марса,	если расст		
1) в 1,5 раза	2) в 10 раз	3) в	15 раз	4) в 22,	5 раза	
23. На рисунке изобра удлинение пружины динамоме	и, выраженное	е в метрах,	-	а для	H 0 1 2 3 2M 0 1 2 3 4 5 6 7 8	4 3 9 10
1) $F=10x$ 3) $F=30x$	2) $F=20x$ 4) $F=40x$					

На рисунке изображены силы, действующие на лестницу, прислоненную к стене. Каков момент силы тяжести \vec{F} , действующий на лестницу, относительно точки С?

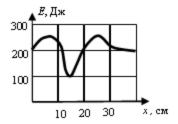
1) $F \times OC$


2) $F \times OD$

3) $F \times AC$

4) $F \times DC$

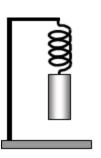
25.


На рисунке изображен тонкий невесомый стержень, к которому приложены силы F_1 =100 H и F_2 =300 H? Чтобы стержень находился в равновесии, ось вращения должна проходить через точку

- 1) 2
- 2) 4
- 3)5
- 4) 6

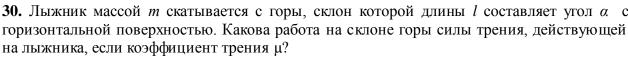
26.

Шарик катится по неровной поверхности. Потенциальная энергия шарика меняется так, как показано на рисунке. При каком значении координаты x он может находиться в устойчивом положении равновесия?


- 1) 5 cm
- 2) 15 см
- 3) 25
- 4) 20

27. Шарик массой 100 г скатился с горки длиной 2 м, составляющей с горизонталью угол 30^{0} . определите работу силы тяжести.

- 1) 1 Дж 2) $\sqrt{3}$ Дж 3) 60 Дж 4) 100 Дж


28.

Ученик собрал установку (см. рисунок). Под действием груза массой 0,4 кг пружина растянулась на 0,1 м. Потенциальная энергия пружины при удлинении равна

- 1) 0,1 Дж
- 2) 0,2 Дж 3) 4,0 Дж
- 4) 4,2 Дж

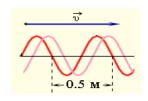
29. Лыжник поднимается на подъемнике на вершину горы, затем скатывается по склону горы вниз и вновь подъезжает к подъемнику по горизонтальной лыжне. Какова суммарная работа силы тяжести, действующей на лыжника на всей траектории его движения?
 равна нулю равна работе, которую совершает сила тяжести при движении на подъемнике равна работе, которую совершает сила тяжести при движении по склону горы равна работе, которую совершает сила тяжести при движении по горизонтальному участку
30. Лыжник массой m скатывается с горы, склон которой длины l составляет угол α с

- 1) $\mu mgl \sin \alpha$ 2) $\mu mgl \cos \alpha$
- 3) $-\mu mgl\sin\alpha$
- 4) $-\mu mgl\cos\alpha$

31. Амплитуда свободных колебаний тела равна 0,5 м. какой путь прошло это тело за 5 периодов колебаний?

1) 2,5 m 2) 0,5 m 3) 2 m 4) 10 m

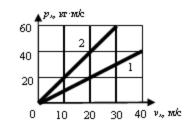
32. С какой скоростью проходит груз пружинного маятника, имеющий массу 0,1 кг, положение равновесия, если жесткость пружины 40 H/м, а амплитуда колебаний 2 см?


1) 4 M/c 2) 10 M/c 3) 0,1 M/c 4) 0,4 M/c

33. Груз подвешен на нити и отклонен от положения равновесия так, что его высота над поверхностью Земли увеличилась на 20 см. С какой скоростью тело будет проходить положение равновесия при свободных колебаниях?

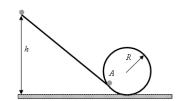
1) 2 m/c 2) 4 m/c 3) 20 m/c 4) 1 m/c

34.


Учитель продемонстрировал опыт по распространению волны по длинному шнуру. В один из моментов времени форма шнура оказалась такой, как показано на рисунке красной кривой. Скорость распространения колебаний по шнуру равна 2 м/с. Частота колебаний равна

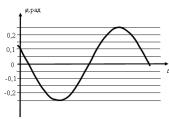
1) 0,25 Гц 2)1 Гц 3) 4 Гц 4) 50 Гц

- 35. Звуковой генератор дает колебания с частотой 330 Гц. Скорость звука в воздухе 330 м/с. При распространении звука в воздухе
- 1) частицы воздуха движутся со скоростью 330 м/с
- 2) частицы воздуха вращаются с периодом (1/330) с
- 3) давление воздуха изменяется по гармоническому закону с частотой 330 Гц
- 4) частицы воздуха движутся со скоростью 1 м/с.
- 36. Тело свободно падает на Землю. Изменяются ли при падении тела импульс тела, импульс Земли и суммарный импульс системы «тело-Земля», если считать эту систему замкн утой?
- 1) импульс тела, импульс Земли и импульс системы «тело-Земля» не изменяются
- 2) импульс тела изменяется, а импульс Земли и импульс системы «тело-Земля» не изменяются
- 3) импульс тела и импульс Земли изменяются, а импульс системы «тело-Земля» не изменяется
- 4) импульс тела, импульс Земли и импульс системы «тело-Земля» изменяются


На рисунке приведены графики зависимости проекции на ось 0x импульсов двух автомобилей от проекции их скоростей относительно Земли. Какова проекция импульса первого автомобиля в системе отсчета, связанной со вторым автомобилем, в тот момент времени, когда проекция скорости первого автомобиля относительно Земли была равна 20 м/с, а второго -10 м/c?

- 1) 60 кг⋅м/с
- 2) 0 κ · m/c
- 3) 10 кг·м/с
- 4) 40 κΓ·м/c
- **38.** Тележка массой m движется с постоянной скоростью v_1 по гладкой горизонтальной поверхности. Навстречу ей движется другая тележка M(M>>m) со скоростью v_2 . Каково изменение импульса первой тележки после абсолютно упругого соударения тележек? Изменением скорости второй тележки после удара пренебречь.
- 1) $2mv_1 + Mv_2$
- 2) $2mv_2$
- 3) $mv_1 + Mv_2$ 4) $2m(v_1 + v_2)$
- 39. Шарик движется без трения по наклонному желобу, а затем описывает «мертвую петлю» радиуса R. Масса шарика равна 100 г, а высота, с которой он начинает движение, равна 4*R*. С какой силой давит шарик на желоб в верхней точке петли. [3]

40.


Небольшое тело массой m=60 г скользит без трения по наклонному желобу, переходящему в «мертвую петлю», с высоты 3R (R – радиус петли). Какова сила давления тела на желоб в точке A (см. рисунок), если она находится на высоте d=R/2? Ответ округлите до десятых. [3,3]

41. Тело брошено вертикально вверх со скоростью 10 м/c. При подъеме на какую высоту h изменение потенциальной энергии взаимодействия тела с Землей окажется в 3 раза меньше кинетической энергии тела на этой высоте? Ответ выразите в сантиметрах и округлите до целых. [125]

42.

Угол отклонения нити математического маятника от вертикали меняется с течением времени так, как показано на рисунке. Масса маятника 150 г. Длина нити 30 см. какова амплитуда колебаний потенциальной энергии маятника? Ответ выразите в миллиджоулях (мДж) и округлите до целых. [14]

- **43.** Стальной шар массой 0,1 кг привязали к нити длиной 1 м. Нить с грузом отвели от вертикали на угол 45^0 и отпустили. Какова скорость груза в момент, когда нить образует с вертикалью угол 30^0 ? Сопротивлением воздуха пренебречь. Ответ округлите до целых. [2]
- **44**. При выстреле из пружинного пистолета вертикально вверх шарик массой 100 г поднимается на высоту 2 м. Какова жесткость пружины, если до выстрела она была сжата на 5 см? [160]
- **45.** Лыжник массой 60 кг спускается с горы высотой 20 м. После спуска он останавливается, проехав 200 м по горизонтальной лыжне. Каков коэффициент трения скольжения? (Считать, что по склону горы он скользит без трения.) [0,1]
- **46.** Груз массой 100 г свободно падает с высоты 10 м с нулевой начальной скоростью. Какова потенциальная энергия груза в тот момент времени, когда его скорость равна 8 м/с? Принять, что потенциальная энергия груза равна нулю на поверхности Земли. [6,8]
- **47.** Тело массой 0,1 кг брошено горизонтально со скоростью 4 м/с с высоты 2 м относительно поверхности Земли. Какова кинетическая энергия тела в момент его приземления? Сопротивление воздуха не учитывать. [2,8]
- **48.** Тело массой 0,1 кг брошено под углом 30^0 к горизонту со скоростью 4 м/с. Какова потенциальная энергия тела в высшей точке подъема? [0,2]

Часть С

- **49.** Свинцовый брусок массой m_1 =500 г, движущийся со скоростью 0,6 м/с, сталкивается с неподвижным восковым бруском массой m_2 =100 г. После столкновения бруски слипаются и движутся вместе. Определите изменение кинетической энергии системы в результате столкновения. Трением пренебречь. [-0,015]
- **50.** Свинцовый брусок массой m_1 =500 г, движущийся со скоростью 0,6 м/с. Сталкивается с неподвижным восковым бруском массой m_2 =100 г. После столкновения бруски слипаются и движутся вместе. Определите кинетическую энергию шаров после удара. [0,075]
- **51.** В тело массой m_1 =4,9 кг, лежащее на гладком участке горизонтальной поверхности, попадает снаряд массой m_2 =0,1 кг, летящий под углом α =60 к горизонту со скоростью ν_{02} =60 м/с, и застревает в нем. Какой путь пройдет тело до остановки, попав на шероховатую часть поверхности, если коэффициент трения скольжения между телом и поверхностью равен μ =0,25? [0,072]

- **52.** Брусок массой m_1 =600 г, движущийся со скоростью 2 м/с, сталкивается с неподвижным бруском массой m_2 =200 г. Какова скорость второго бруска после столкновения? Удар считать центральным и абсолютно упругим. [3]
- **53.** Брусок массой m_1 =600 г, движущийся со скоростью 2 м/с, стал кивается с неподвижным бруском массой m_2 =200 г. Какова скорость первого бруска после столкновения? Удар считать центральным и абсолютно упругим. [1]
- **54.** Шарик скользит без трения по наклонному желобу, а затем движется по «мертвой петле» радиуса R. С какой силой шарик давит на желоб в нижней точке петли, если масса шарика равна 100 г, высота, с которой его отпускают, равна 4R. [9]
- **55.** Шарик скользит без трения по наклонному желобу, а затем описывает в желобе «мертвую петлю» радиуса R=50 см. С какой высоты начал двигаться шарик без начальной скорости, если сила его давления на желоб в верхней точке петли равна нулю? [1,25]

1	3	11	3	21	4	31	4
2	1	12	1	22	2	32	4
3	1	13	1	23	4	33	1
4	1	14	4	24	4	34	3
5	3	15	3	25	2	35	3
6	3	16	1	26	3	36	3
		16-2	2				
7	4	17		27	1	37	3
8	1	18	2	28	2	38	4
9	4	19	1	29	1	39	3
10	3	20	4	30	4	40	3,3
10-2	1						