

ЭДС индукции в движущихся проводниках

Кириллов А.М., учитель гимназии № 44 г. Сочи (http://kirillandrey72.narod.ru/) Если в неизменяющемся магнитном поле движется прямолинейный проводник (рис.), то в нем возникает ЭДС индукции ε_u (разность потенциалов между концами проводника $\Delta \varphi$).

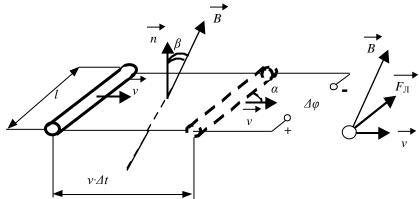


Рисунок – Проводник, движущийся в магнитном поле

$$\Delta \varphi = \varepsilon_u = \frac{\Delta \Phi}{\Delta t} = \frac{B \cdot [l \cdot (v \cdot \Delta t) \cdot \sin \alpha] \cdot \cos \beta}{\Delta t} = Blv \sin \alpha \cos \beta.$$

Отметим, что роль сторонней силы в рассмотренном случае выполняет сила Лоренца (рис.), которая приводит к разделению заряда в проводнике и возникновению разности потенциалов $\Delta \varphi$.

$$_{\Phi$$
ормулу $\Delta \phi = \varepsilon_u = vBl$ физики порой

называют

ВОБЛА

$$(v-во, B-б, l-ла)$$

